
Writing Your First R Program,
Just the Basics

Contents

Introduction

R Programming is Not for Everyone

TIDYVERSE Package

Installing R Packages and Libraries

Starting to Program in R

Changing the Default R Working Folder

Submitting R Commands

R Data Object Process Flow, Structure, Rules and Scope

R Syntax – Basics

Common R Data Frame Operations

R Examples

Data Access Functions to Create Data Frames

R Assignments, Keep, Drop, Subset and Sorting Operations

SQL Example

Appending and Merging R Data Frames

Summarize R Data Frames

Summary

Your First R Script

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 2

3

3

4

4

5

5

6

6

7

7

8

9

9

10

10

10

10

11

Introduction

Are you ready to install R and start writing your first R
program?

Do you want to start using one of the most powerful and
popular R packages, Tidyverse?

This paper assumes you have no prior knowledge of R programming.

Explore and test drive the basic steps to install R and Tidyverse. This paper helps you
understand the R – Basic Syntax, get data into R, combine data frames, query data,
create new variables and finally summarize data. These essential elements are
mandatory for all projects. The demonstration will also show how R programming
allows direct access with function-based tasks executed in logic sequence to get data
into R, perform data management, clean, and summarize results.

Sponsored by ACL Digital Life Sciences, the upcoming webinar series ‘R Programming
for Biometrics Professionals’ is a logically prepared step-by-step crash course that will
immerse you in the world of R programming.

While R is getting popular with more exposure and interest, R may not be for everyone
because it is very technical. R is a ‘short-cut language’ since one-line R commands are
common and concise. It is like SAS’s advanced macros that contain many parameters
with options including default settings. R syntax is not intuitive since programmers
need to remember keywords and syntax.

The primary objective of these R-Guru webinars is to cut through the vast knowledge
and focus on key concepts to uniquely learn R with simple and productive examples
and visual illustrations. This paper introduces you to the different flavours of R syntax
so you can appreciate the full power of R.

sort(unique(csv_file[,56]))

In CSV file, Unique and then Sort
by Column # 56

adsl$sexn[adsl$sex=="m"] <- 1
adsl$sexn[adsl$sex=="f"] <- 2

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 3

R Programming Is Not for Everyone

In ADSL, assign numeric values to SEXN
variable based on SEX values

dm_ex <- left_join(dm, ex, by = "usubjid")

Create DM_EX by Left Joining DM and EX
by USUBJID

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 4

TIDYVERSE Package

Programming in the R world is similar to navigating in space. For many programmers, creating and
working with objects in memory represent the new frontier in space. One of the first R packages all
programmers should learn is the Tidyverse package. The Tidyverse Package is popular because it is one
package that contains libraries with many utilities. Some of the notable features include importing data,
data manipulation, Data Manipulation, Program Language, Visualize, Statistical Models, Publish and Web
Applications. Importantly, Tidyverse is a validated package that is universally accepted as it produces
reliable results. Programmers do not have to worry about the accuracy of results when using Tidyverse
Package.

R runs on R packages. R programmers need to identify and run R packages to run R functions.

Installing R Packages and Libraries
The four steps to install R are very simple and straight forward, they are:

Below is a list of common R packages that perform essential data access, data management and
reporting. An overview of R packages is a topic for future webinars.

install R windows (32 or 64 bit)
https://cran.rstudio.com Double click on R icon

Please select a CRAN mirror for use in
this session
Select US option for internal setting.

download R studio
#https://www.rstudio.com/products
/rstudio/download

Step 1 Step2

Step 3 Step 4

install.packages('tidyverse')

library(tidyverse)

library(dplyr)

library(sqldf)

library() # display loaded libraries

R Package Features / Libraries / Functions

R Package c(), data.frame()

tidyverse

Common data management package for reshaping, transforming, and plotting data
tidyr – useful set of functions such as .data[[]]
dplyr – useful for data management
stringr – string functions
purr – functional programming
tibble – modern and effective table system
ggplot2 - Popular graphic package
readr – read csv files

Plyr ddplyr() – useful to create intermediate steps

Sqldf sql syntax

flextable Proc Report and ODS type control for report formatting

Sassy logr(), fmtr(), datastep(), reporter(), libr()

officer Create rtf and powerpoint files

magtrittr Allow %>% for piping operations from one function to another function

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 5

Code Editor window

Area for code development

Code will not be evaluated or
executed until you hit the 'Run' button

Workspace window

Environment / History window

List objects that exist in the working space

View comment history (like SAS log)

Console window

Here code from the script source is
evaluated by R

Also allows you to perform quick
calculations that you don't need to save

Notebook window

Files/Plots/Packages/Help

Here you can see file folders, plot output,
browse and install available packages,
access R help

Changing the Default R Working Folder
One of the first tasks programmers do is reset the default R working folder (C:/Users/XXX/Documents)
to paths that contain data or saved files. This is important since several R functions will read and write
to the default working folder.

Working Folder

Commands: setwd("C:/study/analysis/output") # create working folder in advance

getwd() # confirm new working folder, default C:/Users/Sunil/Documents

Menu: File > Change dir > browse to C:/study/analysis/output

Important for using saveRDS and readRDS functions for storing & reading files

Write, Save and Read Functions

write.csv(dm, "C:/study/analysis/output/mydm.csv", row.names = FALSE)

saveRDS(asl2, file = "asl2.RDS") # save asl2 as permanent data frame

myasl <- readRDS("asl2.RDS") # read permanent asl2 data frame

Starting to
Program in R

The R interface shows four
panels: Code Editor, Workspace,
Console and Notebook. Each
panel has a purpose so that the
programmer has full control of
his working environment.

Just like SAS Enterprise Guide,
some training is required to start
using the R interface.

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 6

R Data Object Process Flow, Structure, Rules and Scope

R processes are basically a collection of R functions that create and read R objects until the final object is
created. The output of the first R function is the input to the second R function. Output of the second R
function is input to the third R function. Assure open and closed brackets: [], (), ‘’. Close bracket defines end
of R-command. %>% saves time from creating intermediate objects.

In the diagram below, this continues to the fifth outer R function. This means that R functions are used to
access, manage, transform and then summarize data. In addition, because of this unique software
architecture, R functions can have multiple nested levels.

R programming is unique since R objects store
data which must be valid data types so that R
functions can be applied to create new R objects.
So, in a sense, given the software’s unique
architecture the prior level of data within an object
must be fully validated to advance to the next level
of data contained within the subsequent object.
With symbols, direct references can be made to
variables as independent objects. This makes R
programming more flexible. Along with R base,
Tidyverse and ggplots are popular R packages. R
data object process flow and structure, rules and
scope are topics for future webinars.

One ‘Function’ Away

my_data <- cbind
(usubjid, age, date, in_study)

New_R_Object <- R_Function(R_Objects)

R Function(Parameter 1, Parameter 2, etc.)

R Keyword(Existing R_Objects)

format_format (fourth_function (third_function (summary_function (condition_function (object))))

5 5 5 5 5 Data/Vector

format �nal version after 4th function

4th function after 3rd function

3rd function after summary function

summary function results in one value

Intershangeable
Objects

Game
Changer!

one or more conditions results in a or b

data or vector of values

1) Data
(Source)

3) Functions
(Object)

R Data Object Process Flow

2) Object
(Assignment)

4) Object
(Output)

Submitting R Commands
Submitting R commands is a simple process. Once an R script file is opened, you just select one or more
lines and enter Control-R to execute them. The alternative is to select Edit from the menu and then Run Line
or Selection or Run All. The cursor can be placed anywhere on the R command to execute it. Note that if
partial R command is submitted, then R will insert ‘+’ in the log to recognize partial R commands and will
then expect the remaining R command. See the log window for results after each R comment.

The R script is essentially a text file with an .R extension. The .R extension enables R to recognize it. A tip is to
copy R comments from a text file into an R script file. Best practices are to create an R setup file to install
packages and load libraries used on regular tasks like SASAUTOS.

File > Open R Script > Just the R Basics.R
To Run R commands:
Place cursor on R command line in R script
Menu: Edit > a) Run line or selection (Control-R to run)
 b) Run all (To run whole R script)

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 7

Common R Data Frame Operations
As mentioned earlier, R leverages symbols to perform common tasks. Below is a list of common R data
frame operations.

<-

left assignment, best practice to make assignments, similar to = (equal) or copy object

‘Object 2’ <- ‘R Function Creates Object 1’

‘R Function Reads Object 1 to Create Object 2’

One Line R-Commands do the job

t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")

Compared to several lines in SAS Procedures

proc print data=dm; var x y; run;

iris %>% head() # x %>% f(y) is similar to f(x, y)

%>% # enables running R functions in sequence to save you time from creating intermediate objects,
‘and then or pipe to continue statement’, best to unit test each function before sequencing functions

objects() # to display all objects in workspace (data frames, vectors, etc.)

R Syntax – Basics

R is different from SAS in that there are five essential R
data structures – vectors, matrix, array, data frames
and lists. For SAS programmers, I think the vectors
and data frames are the most important. As a basic
concept, vectors are like values in a dataset with only
one variable. Data frames contain a collection of
vectors so contain many variables and records. Most
all R processing is performed on data frames. All R
data structures, and any outputs created from R
functions are R objects.

R Data structures

(a) Vector

(d) Data frame

columns can be
di�erent modes

(b) Matrix (c) Array

(e) List

Vectors

Arrays

Data frames

Lists

Data Frame Operations/Functions Symbol / Syntax

Create Data in Objects c()

Data Frame Variable Reference $

Index Subset (Variable or Records) []

Format

Combine Data Frames by Rows rbind() to append data frames

Combine Data Frames by Columns cbind() to merge vectors

Merge Data Frames merge(), left_join(), sqldf()

SQL Clauses select(), mutate() & chg=, ifelse(), filter(), group_by(), arrange()

format() to format variables and data types

sprintf() to format reporting columns

str_glue() to format char, num and dates as string

Data Frame Operations/Functions Symbol / Syntax

SQL Operations ddplyr(), dplyr, sqldf()

Transpose Data pivot_wider() – tidyverse

pivot_longer() - tidyverse

Old - melt(), spread()

Data Type Conversion as.character(), as.date(), as.integer(), as.data.frame(), as.logical(),
as.table(), as.array()

Missing Values is.na(), is.null()

Object Metadata is.list(), is.matrix(), is.vector(), is.data.frame(), is.array()

Characterize Data /
Variable Metadata

View(), attributes(), length(), ncol(), nrow(), names(), str(), typeof(),
class(), head(), print(), summary(), table()

View Data Frame View() – upper case ‘V’, base R
view() – lower case ‘v’, tidyverse

Loop through List or Variable for (i in <data_frame>$<variable_name>)

Custom Functions function((condition) {true} else {false})

R Example
Below are useful metadata type R functions to describe data frames. Information from R functions
displays data frame variable names, number of records, sample records as well as unique frequency
counts and descriptive statistics. The ‘<=’ symbol assigns the tg object the contents of the ToothGrowth
data frame. All R functions in the remaining statements process the tg data frame. Any text after the ‘#’
symbol is a comment so ignored by R. These R examples show how R objects are processed by R
functions. Simple one function call performs specific tasks. For any of these R functions since the ‘<=’
symbol is not applied, the results are displayed instead of being saved to another R object.

You can run R statements individually from the Edit > Run Line or Selection option or run all R statements in
an R script file from the Edit > Run All option. Results will be displayed in the console window and the tg
data frame window will open.

tg <- ToothGrowth # save sample data
frame to tg data frame

View(tg) # browse tg

str(tg) # display tg attributes and
sample records

attributes(tg) # display tg attributes,
names (tg) is alternative to display
variable names

head(tg) # display tg sample records

print(tg) # display tg all records, like proc
print

summary(tg) # display stats object of
continuous variables

table(tg) # display freq of categorical
variables

Below are outputs from the R functions.

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 8

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 9

CSV files

dm <- read.csv(“c:/mydata.csv”)

dm = read.table(“c:/mydata.csv”) # data tables are similar to data frames

Excel files

library(readxl) # required for read_excel function

l_cancer <-read_excel(“C:/data/l_survey.xlsx”) # forward slashes

View(l_survey) # display object in grid mode containing excel file which you can filter

Libnames

library(haven) # required to read SAS datasets

sdtm <- "/study/sdtm" # assign libname to object named sdtm

Data Access Functions to Create Data Frames
Tidyverse has a rich set of R functions to convert CSV, excel or SAS datasets into R data frames. In
addition, permanent R data frames can also be loaded in memory. Below are several useful examples.

R Assignments, Keep, Drop, Subset and Sorting Operations
Below are examples of R assignment, keep, drop, subset and sorting commands:

Left Variable Assignment (Default)
patient <- 1 # assign number patient = 1

Right Variable Assignment
1 -> patient # right assign number patient = 1
Variable Assignment Options
assign(‘ae’, ‘Headache’) # assign char ae = ‘Headache’
ae = “Headache” # assign char ae = ‘Headache’

Keeping Variables
dm2 = dm1[c(“sex”, “race”)]
data dm2; set dm1; keep sex race; run;

Dropping Variables
dm2 = subset(dm1, select = -c(sex, race))
subset and select functions are similar
data dm2; set dm1; drop sex race; run;
dm2 = dm1[-c(1)] # drop by column index number

Subsetting Records
= = required for comparison
dm2 <- subset(dm, sex == ‘M’)
dm2 <- filter(dm, sex == ‘M’)
dm2 <- filter(dm, sex == ‘M’, age > 21)
subset and filter functions are similar
data dm2; set dm; where sex = ‘M’; run;

Sorting Records
dm2 <- dm[order(sex, race),]
dm2 <- arrange(dm, sex, race)
order and arrange functions are similar
proc sort data=dm2; by sex race; run;

Below are outputs from the R functions.

SAS Datasets

dm <- read_sas(file.path(sdtm, “dm.sas7bdat”)) # read_sas from haven package within tidyverse to
read DM dataset in sdtm library

dm <- read_ sas(“C:/study/sdtm/dm.sas7bdat") # read DM directly

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 10

SQL Example
As in SAS, R’s SQL provides powerful query and multitasking functionality. SQL will be a standalone topic
covered in a later webinar during this series. Below is an SQL example

dm3 = dm1 %>% # create dm3 from dm1 and then or pipe

mutate(idvarval_ = as.numeric(idvarval)) %>% # create new var

idvarval_ = numeric(idvarval)

select(usubjid, idvarval_, qnum, qval) %>% # select four vars

spread(., qnam, qval) # transpose three vars

Appending and Merging R Data Frames
Appending and merging is very direct with R. Examples are below.

demo3 <-bind_rows(demo1, demo2)

data demo3; set demo1 demo2; run;

vitals2<-inner_join(demo1, vitals, by="subjid")

data vitals2;

merge demo1 (in=a)

vitals (in=b);

by subjid; if a and b;

run;

Summarizing R Data Frames
Once data is in R data frames, summarizing your categorical or numeric data is very easy with the TABLE()
and SUMMARISE() R functions.

table(cars$Type)

proc freq data=cars; tables type; run;

table(cars$Type, cars$Cylinders)

proc freq data=cars; tables cars*Cylinders; run;

ASL_mean <- ASL %>%

group_by(ARMCD) %>%

summarise(avg_age = mean(AGE), avg_bmi
= mean(BMI))

proc means data=ASL;

by ARMCD;

var mean bmi;

run;

Summary
While learning a new language requires some patience, we think the rewards of R programming are well
worth the efforts. With these simple steps to install and examples to get started in the world of R
programming, we hope you have clear guidance on your programming journey. The best method to
prevent errors and minimize troubleshooting is to start with the correct and working R example and then
copy and customize it with your data frame name, variables, values, and conditions. Test run each R
program update to assure correct execution before further customizations. You will soon start to feel more
comfortable with R programming.

Your First R Script
While learning a new language requires some patience, we think the rewards of R programming are well
worth the efforts. With these simple steps to install and examples to get started in the world of R
programming, we hope you have clear guidance on your programming journey. The best method to
prevent errors and minimize troubleshooting is to start with the correct and working R example and then
copy and customize it with your data frame name, variables, values, and conditions. Test run each R
program update to assure correct execution before further customizations. You will soon start to feel more
comfortable with R programming.

Name First R Program
Purpose is to install and show basic R commands
Author Sunil Gupta, SASSavvy.com/R-Guru
Date Oct 25 2021
Copyright - 2021, This macro has copyright protection by the author.

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 11

Application of this program for its intended use only in its original form is authorized by the author. All other
applications are at users risk.

R program is not to be used in commercial software product without the written approval by the author.
Any reference to the R program must include reference to SASSavvy.com/R-Guru.
No support or guarantee is provided with the R program or results.
User takes responsibility for R program and results and is encouraged to test the program.

1. install R windows (32 or 64 bit)
https://cran.rstudio.com

2. download R studio
https://www.rstudio.com/products/rstudio/download

3. Double click on R icon

4. Please select a CRAN mirror for use in this session
Select US option for internal setting.

setwd("C:/study/analysis/output")
change default working folder
getwd()
confirm working folder

option b
install.packages('tidyverse')
library(tidyverse) # load popular data management package
library(dplyr) # load common data management and sql package
library(sqldf) # load sql package

library() # display loaded libraries

.libPaths() # display path of each package

lsf.str("package:dplyr") # display dplyr functions
lsf.str("package:tidyverse") # display tidyverse functions

t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 12

x= c(2, 4, 6)
mean(x)
y=c(1, 1, 1)
z = x + y
view(z)

mydata <- data.frame(
 class = c("1st", "2nd", "3rd", "Crew"),
 n = c(325, 285, 706, 885),
 prop = c(14.8, 12.9, 32.1, 40.2)
)
mydata

tg <- ToothGrowth # save sample data frame to tg data frame
View(tg) # browse tg
str(tg) # display tg attributes and sample records
attributes(tg) # display tg attributes, names (tg) is alternative to display variable names
head(tg) # display tg sample records
print(tg) # display tg all records, similar to proc print
summary(tg) # display stats object of continuous variables
table(tg) # display freq of categorical variables

objects() # to display all objects in workspace (data frames, vectors, etc.)

library(readxl) # read excel files
dm_specs <- read_excel("D:/Sunil/GP/Business/ACL Digital/r programming/DM_Specs.xlsx")
View(dm_specs)

dm <- read.csv("D:/Sunil/GP/Business/ACL Digital/r programming/input.csv")
dm1 <- read.table("D:/Sunil/GP/Business/ACL Digital/r programming/input.csv")
dm
dm1

write.csv(dm, "C:/study/analysis/output/mydm.csv", row.names = FALSE)
save permanent csv

sdtm <- "D:/Sunil/GP/Business/ACL Digital/r programming" # assign libname to object named sdtm
list.files
dir

library(haven) # read SAS datasets
asl1 <- read_sas(file.path(sdtm, 'adsl.sas7bdat')) # read_sas from haven package within tidyverse to
read DM dataset in sdtm library
asl1

asl2 <- read_sas("D:/Sunil/GP/Business/ACL Digital/r programming/adsl.sas7bdat") # read DM dataset
directly
asl2
View(asl2)

saveRDS(asl2, file = "asl2.RDS")
save permanent R data frame

myasl <- readRDS("asl2.RDS")
load permanent R data frame
myasl

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital. 13

enter data values into data frame
vs <- read.table(header = TRUE,
 stringsAsFactors = FALSE,
 text = "
 SUBJID HT WT PERIOD
001 180 NA 1
001 181 77 2
002 173 85 1
002 173 83 2");
View(vs)

test_df <- data.frame(
 class = c("1st", "2nd", "3rd", "Crew"),
 n = c(325, 285, 706, 885),
 prop = c(14.8, 12.9, 32.1, 40.2)
)
View(test_df)

patient <- 1 # assign number patient = 1
is(patient)
patient

Right Variable Assignment
1 -> patient # right assign number patient = 1
is(patient)
patient

Variable Assignment Options
assign('ae', 'Headache') # assign char ae = 'Headache'
ae = 'Headache' # assign char ae = 'Headache'
ae

Keeping Variables
test_df2=test_df[c('class', 'n')]
View(test_df2)

Dropping Variables
test_df3= subset(test_df, select = -c(class))
View(test_df3)
test_df4= test_df[-c(3)]
View(test_df4)

df1 <- subset(test_df, class == '1st')
df1 <- filter(test_df, class == '1st')
df1

sorting examples using the mtcars dataset
attach(mtcars)

sort by mpg
newdata <- mtcars[order(mpg),]

sort by mpg and cyl
newdata <- mtcars[order(mpg, cyl),]
newdata

pipe example
query1 <- ToothGrowth %>%
select(len, supp, dose) %>%
mutate(dose2 = (dose*2)) %>%
filter(supp == 'VC') %>%
arrange(supp, dose)
View(query1)

intermediate objects
query1 <- ToothGrowth

query2 <- select(query1, len, supp, dose)
View(query2)

query3 <- mutate(query2, dose2 = (dose*2))
View(query3)

query4 <- filter(query3, supp == 'VC')
View(query4)

query5 <- arrange(query4, supp, dose)
View(query5)

objects()

ASL_mean <- asl1 %>%
 group_by(SEX) %>%
 summarise(avg_age = mean(AGE))
asl1
ASL_mean

table(asl1$SEX)
proc freq data=asl1; tables sex; run;

table(asl1$SEX, asl1$SAFFL)
proc freq data=asl1; tables sex*saffl; run;

Biography
Sunil Gupta is a hands-on Principal Statistical Programmer and CDISC compliance developer of more than
25 years. He has led teams at leading Life Science industry companies such as Amgen, Quintiles, Cytel and
Genentech. Amongst Sunil many professional endeavours include being an international speaker, global
corporate trainer, book author, and teacher. His best-selling books include Clinical Data Quality Checks for
CDISC Compliance Using SAS, Quick Results with the Output Delivery System, Sharpening Your SAS Skills and
Sharpening Your Advanced SAS Skills. Gupta currently teaches online classes at the University of California

ACL Digital is a design-led Digital Experience, Product Innovation, Engineering and Enterprise IT
o�erings leader. From strategy, to design, implementation and management we help accelerate
innovation and transform businesses. ACL Digital is a part of ALTEN group, a leader in technology
consulting and engineering services.

 | www.acldigital.com business@acldigital.com

USA | UK | France | India

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.
All other company and product names may be trademarks of the respective companies with which they are associated.

https://twitter.com/ACL_Digital
https://www.facebook.com/ACLDigital.official
https://www.linkedin.com/company/acl-digital/

