
For the Enterprise Agility and Scalability

Microservices

Table of contents

32Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Introduction 3

Traditional Monolithic Architecture
Patterns Vs Modern Microservice 4

Advantages of a Microservices Architecture 6

Patterns on Microservice 8

Technology and Tooling 10

Raising On Agility 14

Conclusion 14

3Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Introduction

Microservices is an
architectural type that
structures an application as a
cluster of small autonomous
services to develop modern
applications.

It allows teams to focus on
narrower domains and smaller
units, aiding enterprise agility
and scalability to sustain the
surging market demands.
Microservices have made the
mark in the software
architecture market, providing
advantages such as improved
fault tolerance that keeps
larger applications from
getting affected by failures of
smaller modules.

4Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Diagram depicts a simple application that follows the monolithic approach

Web
Application

(Browser/UI)

WAR/Solution

Authentication

Projects Resources

Dashboard

Users

Traditional Monolithic Architecture Patterns vs Modern
Microservice

Monolithic architecture pattern has
traditionally been followed in most
organizations. In a monolith approach,
the complete application is developed
as a single large module which should
be deployed every time, even on minor
changes. In contrast, in the case of
microservices architecture, we need to
deploy only the module which is
affected by the changes.

The biggest pain point of the monolithic
application is on every change cycle,
the complete application should be
verified, whereas, in case of the
microservice we need to verify only the
affected module.

In monolithic, the complete application
should be developed using one specific

technology, but microservice is
technology agnostic. We can develop
every individual module in the
application with different technologies.

Microservice allows to scale every
individual module to the level that is
needed for the business to perform but
in case of monolithic, it is possible to
only scale the whole application.

Microservice architecture is an
ingenious way to create software
quickly while keeping risks to a
minimum. However, while beginning
with the transition, the future-focused
businesses must identify and
acknowledge their application
requirements to ensure agility,
scalability, efficiency, and success.

5Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Diagram depicts the same application in microservice approach

Web Application
(Browser/UI)

API Gateway

Users
Service

Authentication
Project
Service

Dashboard
Service

Resources
Service

Service
Registry

“With larger, monolithic systems, there are fewer
opportunities for people to step up and own
something. With microservices, on the other hand, we
have multiple autonomous codebases that will have
their own independent lifecycles. Helping people step
up by having them take ownership of individual
services before accepting more responsibility can be
a great way to help them achieve their own career
goals, and at the same time lightens the load on
whoever is in charge!”

- Sam Newman, Building Microservices

6Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Advantages of a Microservices Architecture

Microservices architecture brings a lot of advantages to modern applications. Let us
discuss some of those briefly below

Technology Agnostics
Microservice architecture pattern
provides freedom to develop each
module in the application with different
technology which suits that module.

Agility
Microservice pattern allows the team to
focus only on the module they are
responsible for and deliver much faster.

Easy Deployment
Microservice allows deploying only the
changes that reduce the deployment
effort of deploying the whole
application every time.

Cloud Native
Microservices are more cloud native. It
is easy to setup in any public or private
cloud as it is mostly packed as
containers and can be deployed easily.

Scalability
Microservice architecture allows to
scale any individual module to the level
of performance that is needed by the
business. For example, in an air ticket
booking application, the flight search
module is heavily used by the
customers. Microservice architecture
allows to develop the flight search
module as a separate module and
scale it to the level of performance
needed to satisfy the business need.

Better Fault Isolation
In case of any failure in any module,
only the module specific functionality
will not be available to the users, but
users should continue to use the
application with other functionalities
which was not affected. For example, in
the ecommerce application where the
product review service is down, the users
should be able to continue using the
application’s other functionalities like
searching for the product, getting the
product list, purchasing the product, etc.,
& users could not be able to see only
the product review due to which there
won’t be a huge impact on the business
in case of failure in any modules.

The global microservices architecture market size
was valued at $2,073 million in 2018, and is
projected to reach $8,073 million by 2026,
registering a CAGR of 18.6% from 2019 to 2026.

7Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Global Microservices
Architecture Market
Opportunities and
Forecast,

Global Microservices
Architecture Market
is Expected to reach

Growing at a CAGR of
18.6% (2019-2026)

8Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Patterns on Microservice

Microservice architecture provides various patterns for developing high performing and
scalable enterprise applications.

Decomposition Patterns
Decomposition patterns provide
various approaches on how the
application should be broken into
multiple microservices based on the
business requirement such as
decompose by business capability,
decompose by subdomain, self-
contained service, & service per team.

Refactoring Monolithic
to Microservice
There are patterns that allow the
existing monolithic application to
refactor to multiple microservices.
Some of the approaches for refactoring
are strangler application,
anti-corruption layer, etc.

Integration Patterns
Integration patterns suggest how the
microservice communication should
happen inside the application and from
the presentation layer and help us
protect the microservices from any kind
of vulnerabilities. In ACL digital, we
analyze the customer requirement and
based on that, we apply the right
integration pattern for the smooth
performance of the application. The
various integration patterns are API
gateway pattern, aggregator pattern,
client-side UI composition pattern, etc.

Database Patterns
As the microservices are more
independent, it is very crucial to decide
how the database should be organized
for microservices. The database
patterns suggest various ways in which
we can solve the database
requirement for the microservices. The
various database patterns are
database per service, shared database
per service, command query
responsibility segregation (CQRS), and
finally, the saga pattern for maintaining
the atomicity of the transaction.

9Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Observability Patterns
One of the primary disadvantages of
microservices is that they are
distributed and autonomous, so it is
very difficult to address the common
functionality. Observability patterns
suggest the various approaches like
centralized log aggregation, centralized
metrics aggregation, distributed
tracing, health check, etc. to solve this
issue.

Concern Patterns
When it comes to Microservices, there
are various cross-cutting concerns like
application configuration, service
identity, service reliability, etc. All these
concerns can be addressed
respectively by using external
configuration, service discovery, circuit
breaker pattern, etc.

10Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Kubernetes
Kubernetes (aka K8s) is the
open-source container orchestration
platform used for automated software
deployment, scaling, & management. It
was originally developed by Google, but
Cloud Native Computing Foundation
maintains the project now.

Docker Swarm
Docker swarm is another
open-source container
orchestration platform used
extensively in orchestrating the
docker containers due to its
easy-to-use, high security and
scalability features.

CI/CD
Setting up the CI/CD pipeline for
the microservice based
applications allows each team to
build and deploy services
independently with no disruption or
dependencies.

Container Orchestration
In case of microservices, container
orchestration is the key requirement of
teams aiming for rich performance and
scalability. We suggest the below tools
for container orchestration

Technology and Tooling

Various tools and technologies are
available to implement and deploy an
application using microservice
architecture. We suggest you some of
the best tools & technologies based on
our experience in building cutting-edge
enterprise applications catering to
diverse customer requirements. You will
be reading about some of them here.

11Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Jenkins
Jenkins is the leading open-source
automation server that helps automate
various SDLC processes, such as
building the source code to artifacts,
testing, and deployment. It supports
multiple build automation tools such as
Apache Ant, Apache Maven, MS Build,
etc. Jenkins also supports various
source control tools such as Git, CVS,
Subversion, etc., allowing to run the shell
scripts and Windows batch commands.

GitLab
It’s the DevOps platform developed by
GitLab Inc. GitLab allows to develop,
secure, and operate software in a single
application. It was originally developed in
Ruby programming language & some
modules are rewritten in the Go
programming language.

Service Discovery
In microservice architecture, the whole
application is decomposed into multiple
microservices so it is imperative that the
communication between the
microservices is seamless. Service
registry and discovery are essential to
discover every microservice for smooth
communication. There are various tools
available, but we recommend using
Eureka!

Circuit Breaker
As the application is broken into multiple smaller microservices, most of the requests
need communication to multiple microservices to process the response, but when one
of the services is down, it may result in the application getting stalled on request. To
address this issue, various circuit breaker tools are available that help stop the
application from getting stalled by canceling the request for service that is not
available and responding to the caller with the available information. The circuit
breakers that we recommend are Netflix Hystrix, and Spring Cloud circuit breaker.

API Gateway
As the application is broken into multiple smaller microservices, it is very challenging to
call multiple services to provide the response, the API Gateway provides a single-entry
point for all clients. The API gateway also helps in providing API analytics, API
monetization, API documentation, API limiting, Developer portal, API proxy, API
aggregation, etc. There are various frameworks and platforms available for API
gateway and we recommend using Kong API Gateway, Tyk API Gateway, and Ocelot.

External Configuration
A service normally calls other services, and the service in turn calls databases. The
endpoint URL or configuration properties might differ for each environment like Dev, QA,
UAT, and Production. A shift in any of those properties might demand a re-build and
re-deploy of the service, so it is necessary to avoid code modification for any
configuration changes.

The ideal approach is to externalize all the configurations, including endpoint URLs and
credentials, so the application should load them either at startup or on trigger.

Spring Cloud config server allows to externalize the properties to GitHub and load
them as the environment properties. These can be accessed by the application either
at startup or can be refreshed without a server restart by just triggers.

12Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

13Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Alternatively, Azure App
Configuration acts as centralized
storage of configuration values and
provides many additional features
to make configuration
management easier. Azure Key
Vault is the service from Azure
allows storing microservices
configuration centrally. While Azure
Key Vault may seem like a
replacement for Azure App
Configuration, it’s an addition to it.

Distributed Logging
In case of a microservice application, it
consists of multiple instances of a
service running on multiple machines,
so the requests will be distributed
across multiple service instances. Every
individual service instance generates a
log file in a standardized format. So how
we trace the failure through logs when
it is distributed across multiple services
for any request is the key challenge.

To address this issue, we first need a
centralized logging service that
aggregates logs from each service
instance so that the users can search
and analyze the logs and also
configure alerts triggered when there
are certain errors spotted in the logs.

ELK Stack
The ELK stands for three
open-source projects–
Elasticsearch, Logstash, & Kibana,
which can be used to setup the
centralized logging & error tracing.

Elasticsearch is a full-text search
and analytics engine. Logstash is a
log aggregator that collects the
logs from multiple processes and
stores the log into a centralized log
store which is, Elasticsearch. And
finally, Kibana provides a user
interface, allowing users with the
dashboard to visualize, search, and
analyze the log data through
various charts and graphs.

These are independent tools
integrated by Elastic and it
provides an end-to-end log
analysis solution.

14Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.

Raising On Agility

Adopting scalable, agile, friendly, cloud native, containerized Microservices can help
enterprise transform their legacy monolithic to shifts in software development, tools,
techniques, and frameworks. By having smaller independent modules, any changes in
your application can be rapidly developed and deployed with minimal effort.

Using an agile process like Scrum helps the time bound development deliver in a shot
span of time and this is the perfect fit for the microservice based application
development.

Conclusion

Satisfying the needs of any competitive enterprise is the never‐ending process of
adding new features while also maintaining existing functionality. Primary challenge
for enterprises using Monolithic applications is that the cost of maintaining Monolithic
has increased to the point that it no longer suffice skyrocketing enterprise
requirements. It is very difficult to modernize the monolith application.

Moving forward, enterprises need an architecture that allows them to build and
sustain the demanding competitiveness and efficiency that they seek for the
minimum of the next 10 years.

Microservices is the hot iron that addresses the problems we are facing with other
architecture. In ACL, we have built many successful projects and platform using the
Microservices architectural style, which allows our customers to stay ahead and thrive
in the dynamic business landscape. Moving forward, this will be the default style for
building enterprise applications.

ACL Digital is a design-led Digital Experience, Product Innovation, Engineering and Enterprise IT
o�erings leader. From strategy, to design, implementation and management we help accelerate
innovation and transform businesses. ACL Digital is a part of ALTEN group, a leader in technology
consulting and engineering services.

 | www.acldigital.com business@acldigital.com

USA | UK | France | India

Proprietary content. No content of this document can be reproduced without the prior written agreement of ACL Digital.
All other company and product names may be trademarks of the respective companies with which they are associated.

References

• https://sematext.com/guides/elk-stack/

• https://www.alliedmarketresearch.com/microservices-architecture-market#:~:text=The%20
global%20microservices%20architecture%20market,18.6%25%20from%202019%20to%202026.

